Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Safety and Health at Work ; : 303-308, 2023.
Article in English | WPRIM | ID: wpr-1002825

ABSTRACT

Background@#Occupational workers at altitudes are more prone to falls, leading to catastrophic outcomes. Acrophobia, height-related anxiety, and affected executive functions lead to postural instabilities, causing falls. This study investigated the effects of repeated virtual height exposure and training on cognitive processing and height-related anxiety. @*Methods@#Twenty-eight healthy volunteers (age 20.48 ± 1.26 years; mass 69.52 ± 13.78 kg) were recruited and tested in seven virtual environments (VE) [ground (G), 2-story altitude (A1), 2-story edge (E1), 4-story altitude (A2), 4-story edge (E2), 6-story altitude (A3), and 6-story edge (E3)] over three days. At each VE, participants identified occupational hazards present in the VE and completed an Attitude Towards Heights Questionnaire (ATHQ) and a modified State-Trait Anxiety Inventory Questionnaire (mSTAIQ). The number of hazards identified and the ATHQ and mSTAIQ scores were analyzed using a 7 (VE; G, A1, A2, A3, E1, E2, E3) x 3 (DAY; DAY 1, DAY 2, DAY 3) factorial repeated measures analysis of variance. @*Results@#The participants identified the lowest number of hazards at A3 and E3 VEs and on DAY 1 compared to other VEs and DAYs. ATHQ scores were lowest at G, A1, and E1 VEs. @*Conclusion@#Cognitive processing is negatively affected by virtual altitudes, while it improves with short-term training. The features of virtual reality, such as higher involvement, engagement, and reliability, make it a better training tool to be considered in ergonomic settings. The findings of this study will provide insights into cognitive dual-tasking at altitude and its challenges, which will aid in minimizing occupational falls.

2.
Safety and Health at Work ; : 321-326, 2019.
Article in English | WPRIM | ID: wpr-761370

ABSTRACT

BACKGROUND: Performing cognitive tasks and muscular fatigue have been shown to increase muscle activity of the lower extremity during quiet standing. A common intervention to reduce muscular fatigue is to provide a softer shoe-surface interface. However, little is known regarding how muscle activity is affected by softer shoe-surface interfaces during static standing. The purpose of this study was to assess lower extremity muscular activity during erect standing on three different standing surfaces, before and after an acute workload and during cognitive tasks. METHODS: Surface electromyography was collected on ankle dorsiflexors and plantarflexors, and knee flexors and extensors of fifteen male participants. Dependent electromyography variables of mean, peak, root mean square, and cocontraction index were calculated and analyzed with a 2 × 2 × 3 within-subject repeated measures analysis of variance. RESULTS: Pre-workload muscle activity did not differ between surfaces and cognitive task conditions. However, greater muscle activity during post-workload balance assessment was found, specifically during the cognitive task. Cognitive task errors did not differ between surface and workload. CONCLUSIONS: The cognitive task after workload increased lower extremity muscular activity compared to quite standing, irrespective of the surface condition, suggesting an increased demand was placed on the postural control system as the result of both fatigue and cognitive task.


Subject(s)
Humans , Male , Ankle , Electromyography , Fatigue , Knee , Lower Extremity , Muscle Fatigue
SELECTION OF CITATIONS
SEARCH DETAIL